Spent nuclear fuel

Mats Jonsson KTH Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

II Letnia Szkoła Energetyki i Chemii Jądrowej

KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

Spent nuclear fuel

ROYAL INSTITUTE OF TECHNOLOGY

Mats Jonsson, KTH Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

E-mail: matsj@kth.se

The nuclear fuel cycle

Who is Mats Jonsson?

- MSc in Chemistry and Chemical Engineering (1991)
- PhD in Nuclear Chemistry (1995)
- Postdoc at NRC, Ottawa, Canada (1995/1996)
- Researcher at ABB Corporate Research (Swe) (1996/1997)
- Assistant Professor at KTH (1997-2003)
- Associate Professor at KTH (2003-2005)
- Professor (Nuclear Chemistry) at KTH (2005-)
- Head of department of Chemistry (2009-2011)
- Vice Dean School of Chemical Science and Engineering (2011-)

Mats Jonsson: Research history

- 1991-1996: Free radical (radiation) chemistry
- 1996/1997: Reactor chemistry (CRUD)
- 1997-1999: Free radical chemistry (including polymer chemistry)
- 2000- : Geological repositories for spent nuclear fuel, Interfacial radiation chemistry, Polymer chemistry, Photocatalysis

• Focus on radiation chemistry

Lectures: Outline

- Part 1: Characteristics of spent nuclear fuel
- Part 2: Geological repositories for spent nuclear fuel
- Part 3: Reprocessing of spent nuclear fuel

• Part 2 is the main part

Part 1: Characteristics of spent nuclear fuel

• What is nuclear fuel?

• What happens to the nuclear fuel in the reactor?

• What is spent nuclear fuel?

Nuclear fuel (UO₂)

ROYAL INSTITUTE OF TECHNOLOGY

Fuel manufacturing

Nuclear fuel

- Ceramic material with very high density
- Homogeneous material
- Chemically fairly stable in the absence of oxidants (e.g. O_2)
- UO₂ powder is pyrophoric in oxygen atmosphere!

Fuel elements

What happens in the reactor?

What happens in the reactor?

Fission product distribution

Composition of spent nuclear fuel

Composition of spent nuclear fuel

1 metric tonne of SNF* contains: 955.4 kg U 8.5 kg Pu (5.1 kg 230 Pu) Minor actinides (MAs): 0.5 kg 237Np 0.6 kg Am 0.02 kg Cm Long-lived fission products (LLFPs): 0.2 kg 129/ 0.8 kg 97c 0.7 kg \$3Zr 0.3 kg 135Cs Short-lived fission products (SLFPs): 1.0 kg 137Cs 0.7 kg ** Sr Stable isotopes: 10.1 kg lanthanides 21.8 kg other stable *33,000 MIND/MT, 10 yr cooling

What happens in the reactor?

- The pellets are exposed to intense radiation fields
- The temperature gradient in the pellet is extreme
- Vibrations in the fuel bundles

Nuclear fuel after use in the reactor

More spent fuel

Uranium distribution

Noble metal inclusions (fission products)

ROYAL INSTITUTE OF TECHNOLOGY

(a)

(c)

200nm

OF TECHNOLOGY

Noble metal inclusions

- Sometimes called ϵ -particles or ϵ -phase
- Composed of metals that are insoluble in the oxide matrix

OF TECHNOLOGY

Spent nuclear fuel is

- a highly heterogeneous material (chemical composition and microstructure)
- a hot material both in terms of temperature and radioactivity

Radioactivity

Spent nuclear fuel can be seen as

• a resource containing fissile material for nuclear fuel

• OR

• waste containing highly radiotoxic elements

Both are correct! (The second one is always correct)

Options

ROYAL INSTITUTE OF TECHNOLOGY

End of part 1

ROYAL INSTITUTE OF TECHNOLOGY